
Tetrahedron Letters 45 (2004) 8177–8181

Tetrahedron
Letters
Stereoselective synthesis of azasugars by electrochemical oxidation
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Abstract—A new method using electrochemical oxidation has been exploited for the stereoselective synthesis of 2,3,6-trihydroxyl-
ated 5S-piperidine derivatives. The electrochemical method was successively used for the conversion of N-protected piperidines to
N-protected 1-methoxypiperidines and for the conversion of 1-methoxy-2,3-didehydropiperidine derivatives to 1,2,3-triacetoxypi-
peridine derivatives. The method provided a new synthetic route to 2S,3S,6-triacetoxy-5S-methylpiperidine and 2R,3R,6-triacet-
oxy-5S-methylpiperidine.
� 2004 Elsevier Ltd. All rights reserved.
Polyhydroxylated 5S-methylpiperidines 1, a class of aza-
sugars, have attracted great interest due to their biolog-
ical properties.1 Some of them are potential inhibitors of
glycosidases and glycoprotein-processing enzymes. Now
they have being widely investigated as candidates of
drugs to treat a variety of carbohydrate-mediated dis-
eases such as diabetes, viral infection including HIV,
and cancer metastasis. The inhibitory activities depend
on the configuration and the number of hydroxyl groups
(Fig. 1). Among 1, 2,3,6-trihydroxy-5S-methylpiperi-
dines 2 are worth of note since recently it has been re-
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ported that 2R,3S,6-trihydroxy-5S-methylpiperidine
(2a), one of the possible stereoisomers 2a–d (Fig. 2),
has high inhibitory activities towards glycosidases.2

However, there has not been any synthetic method for
2b–d.2,3 This paper describes a new method for a stereo-
selective synthesis of precursors of 2b,c.

Our strategy to this end is based on a preparation of tri-
acetate 6, a precursor of 2, from 5S-acetoxymethylpi-
peridine derivative 3 by electrochemical oxidation;
electrochemical 1-methoxylation of 3 and electrochemi-
cal triacetoxylation of 1-methoxy-2,3-didehydro-5S-
acetoxymethylpiperidine derivative 4 (Eq. 1).

The first key electrochemical reaction in the strategy has
already been used in the transformation of N-meth-
oxycarbonylpiperidine 7a to 1-methoxy-2,3-didehydropi-
peridine 10a. The transformation consisted of
electrochemical oxidation of 7a in MeOH to afford 1-
methoxypiperidine 8a, elimination of MeOH from 8a
to 1,2-didehydropiperidine 9a, bromine oxidation of 9a
on.
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Figure 2. Stereoisomers 2a–d of 2,3,6-trihydroxy-5S-methylpiperidines 2.
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followed by base-induced dehydrobromination to
1-methoxy-2,3-didehydropiperidine 10a (Eq. 2).4 Accord-
ing to this method, the other 1-methoxy-2,3-didehyd-
ropiperidines 10b–d were similarly prepared from 7b–d.
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With 10a–d in hand, we examined the second key electro-
chemical triacetoxylation of 10a–d, which was carried
out in acetic acid containing potassium acetate (Eq.
3).5 As expected, the oxidation gave triacetoxylated
products 11a–d, though their stereochemistry was not
determined at this stage. Then we achieved the reductive
elimination of 1-acetoxyl group of 11a–d by Et3SiH to
afford 2,3-diacetoxypiperidines 12a–d.6 The yields of
11a–d and 12a–d are shown together with the trans/cis
ratio in Table 1.

The stereochemistry (trans/cis) of 12a–d was somewhat
dependent on R (70/30 � 54/46).7 Then, we tried the
preparation of 4 from 38 through 13 and 149b to obtain
4 in a similar way to a transformation of 7 to 10. The
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Table 1. Electrochemical oxidation of 10a–d followed by reduction

11a–d with Et3SiH

Entry 10a–d R Yields trans:cis (12a–d)

11a–d 12a–d

1 OMe 81% 84% 70:30

2 OCH2Ph 54% 82% 58:42

3 H 78% 65% 66:34

4 Ph 50% 45% 54:46
result is shown in Eq. 4. The desired 4 was also obtained
from x-amino-2-amino alcohol derivative 15, easily
available from LL-lysine.9 Electrochemical oxidation of
4 afforded tetraacetoxylated piperidine 5,10 of which
reduction with Et3SiH gave 2,3,6-triacetoxy-5S-methyl-
piperidine 6 in 53% from 4 (Eq. 4). Although 6 was ob-
tained as a mixture of stereoisomers (91/3/3/3),11 the
main isomer 62S,3S (Fig. 3) fortunately crystallized.12

The absolute stereochemistry was determined to be
(2S,3S) by its X-ray analysis.13

In contrast to the electrochemical oxidation of 4, that of
bicyclic carbamate 19, which was prepared from LL-pipe-
colinic acid derivative 169a or from LL-lysine derivative 22
through 17 and 18,14 followed by reduction of the oxida-
tion product 20 (70% yield) with Et3SiH gave a single
stereoisomer 21 as a crystal (Eq. 5).15 The absolute
stereochemistry was also determined to be (2R,3R) by
its X-ray analysis.13

The reaction mechanism for electrochemical triacetoxyl-
ation is tentatively proposed as follows (Eq. 6). Since
it was found that 10a was immediately converted to 3-
acetoxy-1,2-didehydropiperidine 23 under the reaction
conditions, oxidation of 23 may be responsible for the
formation of 11a. We already reported electrochemical
1,2-diacetoxylation of 1,2-didehydropiperidines.5

As for 3-acetoxy-1,2-didehydropiperidine intermediates
involved in electrochemical triacetoxylation of 4 and
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19, the stereochemistry must be taken into an account.
The plausible intermediates may be 243S,5S and 253R,5S
but not 243R,5S and 253S,5S, respectively, because of eas-
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Scheme 1. Plausible mechanism for stereoselective formation of 243S,5S and
ier attack of acetic acid on the C-3 of allylic cations A
and B from the equatorial direction than from the axial
direction (Scheme 1).16

The observed high stereoselectivity in electrochemical
oxidation of 243S,5S and 253R,5S may be also explainable
in terms of equatorial attack of acetic acid on the C-2 of
plausible cationic intermediates17 C and D to produce
51,2R,3S,5S and 201,2S,3R,5S, respectively (Scheme 2).16

The less stereoselective triacetoxylation of 10a–d may
be due to a conformational flexibility of the piperidine
ring, which has no substituent at the 5-position.
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Scheme 2. Plausible mechanism for stereoselective formation of 51,2R,3S,5S and 201,2S,3R,5S.
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In summary, a stereoselective formal synthesis of two
stereoisomers 2b,c of 2,3,6-trihydroxyl-5S-methylpiperi-
dines 2 from LL-lysine and LL-pipecolinic acid has been
accomplished by using electrochemical oxidation.
Exploitation of the synthetic method for the other
stereoisomer 2d is now under investigation.
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