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Stereoselective synthesis of azasugars by electrochemical oxidation
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Abstract—A new method using electrochemical oxidation has been exploited for the stereoselective synthesis of 2,3,6-trihydroxyl-
ated 5S-piperidine derivatives. The electrochemical method was successively used for the conversion of N-protected piperidines to
N-protected 1-methoxypiperidines and for the conversion of 1-methoxy-2,3-didehydropiperidine derivatives to 1,2,3-triacetoxypi-
peridine derivatives. The method provided a new synthetic route to 2S,3S,6-triacetoxy-5S-methylpiperidine and 2R,3 R,6-triacet-
oxy-5S-methylpiperidine.

© 2004 Elsevier Ltd. All rights reserved.

ported that 2R,3S,6-trihydroxy-5S-methylpiperidine
(2a), one of the possible stereoisomers 2a-d (Fig. 2),
has high inhibitory activities towards glycosidases.?

Polyhydroxylated 5S-methylpiperidines 1, a class of aza-
sugars, have attracted great interest due to their biolog-
ical properties.! Some of them are potential inhibitors of

glycosidases and glycoprotein-processing enzymes. Now
they have being widely investigated as candidates of
drugs to treat a variety of carbohydrate-mediated dis-
eases such as diabetes, viral infection including HIV,
and cancer metastasis. The inhibitory activities depend
on the configuration and the number of hydroxyl groups
(Fig. 1). Among 1, 2,3,6-trihydroxy-5S-methylpiperi-
dines 2 are worth of note since recently it has been re-
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However, there has not been any synthetic method for
2b-d.?3 This paper describes a new method for a stereo-
selective synthesis of precursors of 2b,c.

Our strategy to this end is based on a preparation of tri-
acetate 6, a precursor of 2, from 5S-acetoxymethylpi-
peridine derivative 3 by electrochemical oxidation;
electrochemical 1-methoxylation of 3 and electrochemi-
cal triacetoxylation of 1-methoxy-2,3-didehydro-5S-
acetoxymethylpiperidine derivative 4 (Eq. 1).

The first key electrochemical reaction in the strategy has
already been used in the transformation of N-meth-
oxycarbonylpiperidine 7a to 1-methoxy-2,3-didehydropi-
peridine 10a. The transformation consisted of
electrochemical oxidation of 7a in MeOH to afford 1-
methoxypiperidine 8a, elimination of MeOH from 8a
to 1,2-didehydropiperidine 9a, bromine oxidation of 9a

reducuon
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Figure 2. Stereoisomers 2a—d of 2,3,6-trihydroxy-5S-methylpiperidines 2.

followed by base-induced dehydrobromination to
1-methoxy-2,3-didehydropiperidine 10a (Eq. 2).* Accord-
ing to this method, the other 1-methoxy-2,3-didehyd-
ropiperidines 10b—d were similarly prepared from 7b-d.
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With 10a—d in hand, we examined the second key electro-
chemical triacetoxylation of 10a-d, which was carried
out in acetic acid containing potassium acetate (Eq.
3).> As expected, the oxidation gave triacetoxylated
products 11a-d, though their stereochemistry was not
determined at this stage. Then we achieved the reductive
elimination of 1-acetoxyl group of 11a—d by Et;SiH to
afford 2,3-diacetoxypiperidines 12a-d.° The yields of
11a-d and 12a-d are shown together with the trans/cis
ratio in Table 1.

The stereochemistry (trans/cis) of 12a—d was somewhat
dependent on R (70/30 ~ 54/46).” Then, we tried the
preparation of 4 from 3% through 13 and 14°° to obtain
4 in a similar way to a transformation of 7 to 10. The
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Table 1. Electrochemical oxidation of 10a-d followed by reduction
11a-d with Et;SiH

Entry 10a-d R Yields trans: cis (12a—d)
11a-d 12ad

1 OMe 81% 84% 70:30

2 OCH,Ph 54% 82% 58:42

3 H 78% 65% 66:34

4 Ph 50% 45% 54:46
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result is shown in Eq. 4. The desired 4 was also obtained
from w-amino-2-amino alcohol derivative 15, easily
available from L-lysine.’ Electrochemical oxidation of
4 afforded tetraacetoxylated piperidine 5,'° of which
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reduction with Et;SiH gave 2,3,6-triacetoxy-5S-methyl-
piperidine 6 in 53% from 4 (Eq. 4). Although 6 was ob-
tained as a mixture of stereoisomers (91/3/3/3),!! the
main isomer 6,535 (Fig. 3) fortunately crystallized.'?
The absolute stereochemistry was determined to be
(2S5,3S) by its X-ray analysis.'?

In contrast to the electrochemical oxidation of 4, that of
bicyclic carbamate 19, which was prepared from L-pipe-
colinic acid derivative 16° or from L-lysine derivative 22
through 17 and 18,4 followed by reduction of the oxida-
tion product 20 (70% yield) with Et;SiH gave a single
stereoisomer 21 as a crystal (Eq. 5).! The absolute
stereochemistry was also determined to be (2R,3R) by
its X-ray analysis.'3

The reaction mechanism for electrochemical triacetoxyl-
ation is tentatively proposed as follows (Eq. 6). Since
it was found that 10a was immediately converted to 3-
acetoxy-1,2-didehydropiperidine 23 under the reaction
conditions, oxidation of 23 may be responsible for the
formation of 11a. We already reported electrochemical
1,2-diacetoxylation of 1,2-didehydropiperidines.>

As for 3-acetoxy-1,2-didehydropiperidine intermediates
involved in electrochemical triacetoxylation of 4 and
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Figure 3.
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19, the stereochemistry must be taken into an account.
The plausible intermediates may be 243555 and 253z 55
but not 24;¢ 55 and 255 55, respectively, because of eas-

ier attack of acetic acid on the C-3 of allylic cations A
and B from the equatorial direction than from the axial
direction (Scheme 1).'°

The observed high stereoselectivity in electrochemical
oxidation of 243555 and 2535 55 may be also explainable

OAc OAc in terms of equatorial attack of acetic acid on the C-2 of
7 AcOH 2e AcO plausible cationic intermediates!” C and D to produce
: 16
N | AcOH (6) 512r3s5s and 201,25,31;755., respectlvlely (Scheme 2).
MeO i N AcO EOM The less stereoselective triacetoxylation of 10a—d may
? CO:Me e be due to a conformational flexibility of the piperidine
10a 23 11a ring, which has no substituent at the 5-position.
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Scheme 1. Plausible mechanism for stereoselective formation of 2435 55 and 25;¢ 5.
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Scheme 2. Plausible mechanism for stereoselective formation of 5y g 3555 and 201 253k ss-

In summary, a stereoselective formal synthesis of two
stereoisomers 2b,c¢ of 2,3,6-trihydroxyl-5S-methylpiperi-
dines 2 from L-lysine and L-pipecolinic acid has been
accomplished by using electrochemical oxidation.
Exploitation of the synthetic method for the other
stereoisomer 2d is now under investigation.
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over MgSO, and the solvent was removed in vacuo, the
residue was subjected on chromatography (silica gel)
(AcOEt:n-hexane = 1:3) to afford 1,2,3-triacetoxy-5S-acet-
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oxymethyl- N-methoxycarbonyl piperidine (5) in 85%
yield.

Determined by HPLC method; YMC-Pack SIL
(0.46cmJ x 15cm), n-hexane/ethanol = 10/1, wavelength:
210nm, flow rate: 0.5mL/min, retention time of major
isomer: 11.4min.

62535, mp 102-104°C (from AcOEt-n-hexane), [a]ff +40.0
(¢ 0.5 CHCly).

Crystallographic ~ data  for 6,535 C,4H>NOsg,
FW = 331.32, orthorhombic, P2,2,2,(#19) space group,
a=6.7419(7), b=10.5386(3), ¢=239189(NA, V=
1699.4Q2) A3, Z=4, Dg.=1295gem™>, p(Mo,Ka) =
1.07ecm™",  Foo =704, T=296K, Crystal size
(mm) = 0.55 x 0.40 x 0.30. Crystallographic data for 21:
C11HsNOg, FW =257.24, orthorhombic, P2;2,2,(#19)

space  group, a=6.6474(7), b=8.762512), c=
20.4793(6)A, V=119291)A°, Z=4, D= 1432
gem ™, p(Mo,Ka) =1.17cm™), Fopo = 544, T=297K,

crystal size (mm) = 0.55x0.25x 0.20. Compounds 6,535
and 21 were mounted on a glass fiber. All measurements
were made on a Quantum CCD area detector coupled
with a Rigaku AFC7 diffractometer using graphite-mon-
ochromated Mo Ko radiation (41=0.71069A) at
296-297K. Data were collected in 0.50° oscillations with
30.0s exposures. A sweep of data was done using ¢
oscillations from 0.0° to 190.0° at y = 0° and a second
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16.

17.
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sweep was performed using w oscillations between —19.0°
and 23.0° at y =90.0°. The crystal-to-detector distance
was 40.7mm, and the detector swing angle was —5.0°. The
data were corrected for Lorentz and polarization effects.
The structures were solved by direct methods (SIR92) and
refined by full matrix least squares methods. All calcula-
tions were performed using TEXSAN.

CCDC 246337 & 246338 contains the supplementary
crystallographic data for this paper. The data can be
obtained free of charge via www.ccdc.cam.ac.uk/data_
request/cif, by e-mailing data_request@ccdc.cam.ac.uk, or
by contacting The Cambridge Crystallographic Data
Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax:
+44(0)-1223-336033.
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21: mp 127-129°C (from AcOEt-n-hexane), [O(]%f -75.2 (¢
0.6 CHCI5).

The stereoselectivity can be also explainable in terms of a
participating effect of 3-acetoxyl group or thermodynamic
control of the products.

A mechanism involving an initial attack of acetic acid on
C-2 of a cation (C-2) radical (C-1) intermediate cannot be
denied.
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